%I #13 Apr 02 2017 10:27:04
%S 0,0,0,1,2,0,3,2,0,4,2,0,4,0,0,1,8,6,10,8,0,4,8,0,2,6,12,0,4,8,4,9,13,
%T 16,14,11,8,20,9,6,3,7,4,8,12,16,20,0,4,0,24,12,4,6,10,0,4,22,12,16,
%U 20,24,12,25,12,36,23,8,3,0,25,22,12,23,20,31,14,32,29,19,16
%N Remainder when 4*n is divided by A005185(n).
%H Altug Alkan, <a href="/A284124/b284124.txt">Table of n, a(n) for n = 1..10000</a>
%H Altug Alkan, <a href="/A284124/a284124.png">Alternative Scatterplot of A284124</a>
%F a(n) = A008586(n) mod A005185(n) for n > 0.
%e a(5) = 2 because remainder when 4*5 = 20 is divided by A005185(5) = 3 is 2.
%t a[1] = a[2] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[n - a[n - 2]]; Table[Mod[4 n, a@ n], {n, 81}] (* _Michael De Vlieger_, Mar 20 2017 *)
%o (PARI) a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); vector(1000, n, (4*n)%a[n])
%Y Cf. A005185, A008586.
%K nonn,look
%O 1,5
%A _Altug Alkan_, Mar 20 2017