Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Nov 26 2023 03:11:02
%S 1,1,1,1,1,1,8,1,1,1,1,1,14,8,1,1,1,1,20,1,8,1,1,1,26,14,1,8,1,1,32,1,
%T 1,1,8,1,38,20,14,1,1,8,44,1,1,1,1,1,57,26,1,14,1,1,56,8,20,1,1,1,62,
%U 32,8,1,14,1,68,1,1,8,1,1,74,38,26,20,8,14,80,1,1
%N a(n) = Sum_{d|n, d == 1 (mod 6)} d.
%H Seiichi Manyama, <a href="/A284098/b284098.txt">Table of n, a(n) for n = 1..10000</a>
%F G.f.: Sum_{k>=0} (6*k + 1)*x^(6*k+1)/(1 - x^(6*k+1)). - _Ilya Gutkovskiy_, Mar 21 2017
%F G.f.: Sum_{n >= 1} x^n*(1 + 5*x^(6*n))/(1 - x^(6*n))^2. - _Peter Bala_, Dec 19 2021
%F Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/72 = 0.137077... (A086729). - _Amiram Eldar_, Nov 26 2023
%t Table[Sum[If[Mod[d, 6] == 1, d, 0], {d, Divisors[n]}], {n, 80}] (* _Indranil Ghosh_, Mar 21 2017 *)
%o (PARI) for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 6)==1, d, 0)), ", ")) \\ _Indranil Ghosh_, Mar 21 2017
%o (Python)
%o from sympy import divisors
%o def a(n): return sum([d for d in divisors(n) if d%6==1]) # _Indranil Ghosh_, Mar 21 2017
%Y Cf. A086729, A109701.
%Y Cf. Sum_{d|n, d==1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), this sequence (k=6), A284099 (k=7), A284100 (k=8).
%K nonn,easy
%O 1,7
%A _Seiichi Manyama_, Mar 20 2017