Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Mar 20 2017 12:08:28
%S 2,3,6,11,12,15,16,17,19,20,23,25,27,30,33,34,37,38,47,48,51,53,56,57,
%T 58,60,66,68,75,76,77,78,79,86,87,89,90,93,94,99,100,101,107,110,123,
%U 124,128,133,137,138,139,141,143,145,147,151
%N Indices n where prime(n) + 2*prime(n+1) and 2*prime(n) + prime(n+1) have the same number of prime divisors counted with multiplicity.
%H Charles R Greathouse IV, <a href="/A284091/b284091.txt">Table of n, a(n) for n = 1..10000</a>
%F n such that A001222(A000040(n)+2*A000040(n+1))=A001222(2*A000040(n)+A000040(n+1)). - _Robert Israel_, Mar 20 2017
%e n = 15, prime(n) = 47, prime(n+1) = 53, both 2*47 + 53 = 147 = 3*7^2 and 47 + 2*53 = 153 = 3^2*17 are products of 3 primes.
%p select(t -> numtheory:-bigomega(2*ithprime(t)+ithprime(t+1)) = numtheory:-bigomega(ithprime(t)+2*ithprime(t+1)), [$1..1000]); # _Robert Israel_, Mar 20 2017
%t Select[Range[1000],PrimeOmega[{2,1}.{(p=Prime[#]),(q=Prime[#+1])}]==PrimeOmega[{1,2}.{p,q}]&]
%o (PARI) list(lim)=my(v=List(),p=2,n); forprime(q=3,, if(n++>lim, break); if(bigomega(p+2*q)==bigomega(2*p+q), listput(v,n)); p=q); Vec(v) \\ _Charles R Greathouse IV_, Mar 20 2017
%Y A241945 is a subsequence.
%Y Cf. A000040, A001222.
%K nonn
%O 1,1
%A _Zak Seidov_, Mar 19 2017