%I #15 Mar 18 2017 08:34:10
%S 1,64,46656,497664,11664000000,518400000,274451587200000,
%T 41821194240000,63515938752000000,403275801600000,
%U 3750745332381062400000,8659729483130880000,115208108444831203593792000000,60895775359471852800000,189903475458512972956800000
%N Denominators of poly-Bernoulli numbers B_n^(k) with k=6.
%H Seiichi Manyama, <a href="/A283924/b283924.txt">Table of n, a(n) for n = 0..479</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Poly-Bernoulli_number">Poly-Bernoulli number</a>
%e B_0^(6) = 1, B_1^(6) = 1/64, B_2^(6) = -601/46656, B_3^(6) = 4409/497664, ...
%t B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-6), {m, 0, n}];
%t Table[Denominator[B[n]], {n, 0, 15}] (* _Indranil Ghosh_, Mar 18 2017 *)
%o (PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-6));
%o for(n=0, 15, print1(denominator(B(n)),", ")) \\ _Indranil Ghosh_, Mar 18 2017
%Y Cf. A283923.
%K nonn,frac
%O 0,2
%A _Seiichi Manyama_, Mar 18 2017