%I #13 Dec 11 2017 05:04:16
%S 1,3,5,11,21,43,93,179,381,763,1533,3059,6141,12283,24573,49139,98301,
%T 196603,393213,786419,1572861,3145723,6291453,12582899,25165821,
%U 50331643,100663293,201326579,402653181,805306363,1610612733,3221225459,6442450941,12884901883
%N Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 758", based on the 5-celled von Neumann neighborhood.
%C Initialized with a single black (ON) cell at stage zero.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H Robert Price, <a href="/A283905/b283905.txt">Table of n, a(n) for n = 0..126</a>
%H Robert Price, <a href="/A283905/a283905.tmp.txt">Diagrams of first 20 stages</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, Dec 10 2017: (Start)
%F G.f.: (1 + x - x^2 + x^3 - 2*x^4 + 8*x^6 - 8*x^7 + 24*x^8) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + x^2)).
%F a(n) = 2*a(n-1) + a(n-4) - 2*a(n-5) for n>4.
%F (End)
%t CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t code = 758; stages = 128;
%t rule = IntegerDigits[code, 2, 10];
%t g = 2 * stages + 1; (* Maximum size of grid *)
%t a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t ca = a;
%t ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t PrependTo[ca, a];
%t (* Trim full grid to reflect growth by one cell at each stage *)
%t k = (Length[ca[[1]]] + 1)/2;
%t ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i ,1, stages - 1}]
%Y Cf. A283712, A283713, A283752.
%K nonn,easy
%O 0,2
%A _Robert Price_, Mar 17 2017