login
Smallest number that is the sum of n successive primes and also the sum of n successive semiprimes, n > 1.
2

%I #16 Mar 24 2017 11:10:12

%S 24,749,48,311,690,251,2706,2773,6504,1081,2162,1753,11356,6223,1392,

%T 2303,9838,637,14510,1995,3154,21459,72960,5691,8140,1475,2350,3647,

%U 1593,7607,55074,2719,9852,12143,106562,12615,9036,19883,15438,28369,8560,8415,3831

%N Smallest number that is the sum of n successive primes and also the sum of n successive semiprimes, n > 1.

%C The sequence is non-monotone.

%H Alois P. Heinz, <a href="/A283873/b283873.txt">Table of n, a(n) for n = 2..1000</a>

%e a(2) = 24 = A000040(5) + A000040(6) = 11 + 13 = A001358(4) + A001358(5) = 10 + 14,

%e a(3) = 749 = A000040(53) + A000040(54) + A000040(55) = 241 + 251 + 257 = A001358(79) + A001358(80) + A001358(81) = 247 + 249 + 253.

%p issp:= n-> is(not isprime(n) and numtheory[bigomega](n)=2):

%p ithsp:= proc(n) option remember; local k; for k from 1+

%p `if`(n=1, 1, ithsp(n-1)) while not issp(k) do od; k

%p end:

%p ps:= proc(i, j) option remember;

%p ithprime(j)+`if`(i=j, 0, ps(i, j-1))

%p end:

%p ss:= proc(i, j) option remember;

%p ithsp(j)+`if`(i=j, 0, ss(i, j-1))

%p end:

%p a:= proc(n) option remember; local i, j, k, l, p, s;

%p i, j, k, l, p, s:= 1, n, 1, n, ps(1, n), ss(1, n);

%p do if p=s then return p

%p elif p<s then i:=i+1; j:=j+1; p:= ps(i, j)

%p else k:=k+1; l:=l+1; s:= ss(k, l)

%p fi od

%p end:

%p seq(a(n), n=2..50); # _Alois P. Heinz_, Mar 24 2017

%t sp=Select[Range[4,100000],2==PrimeOmega[#]&];pr=Prime[Range[PrimePi[Max[sp]]]];

%t Table[Intersection[(Total/@Partition[pr,k,1]),Total/@Partition[sp,k,1]][[1]],{k,2,100}}

%Y Cf. A000040 Primes, A001358 Semiprimes, A118717 Sum of two consecutive semiprimes.

%Y Sum of k consecutive primes: A001043 k=2, A034961 k=3, A034963 k=4, A034964 k=5, A127333 k=6, A127334 k=7, A127335 k=8, A127336 k=9, A127337 k=10, A127338 k=11, A127339 k=12.

%K nonn

%O 2,1

%A _Zak Seidov_, Mar 17 2017

%E More terms from _Alois P. Heinz_, Mar 24 2017