login
Triangle T(n,k) read by rows: the number of symmetric q-circulant n X n {0,1}-matrices where each column sum, each row sum and the trace equal k.
0

%I #11 Nov 05 2021 10:22:36

%S 1,1,1,1,0,1,1,3,3,1,1,0,4,0,1,1,5,10,10,5,1,1,0,9,0,9,0,1,1,7,21,35,

%T 35,21,7,1,1,0,16,0,44,0,16,0,1,1,9,36,84,126,126,84,36,9,1,1,0,25,0,

%U 100,0,100,0,25,0,1,1,11,55,165,330,462,462,330,165,55,11,1,1,0,36

%N Triangle T(n,k) read by rows: the number of symmetric q-circulant n X n {0,1}-matrices where each column sum, each row sum and the trace equal k.

%F Conjecture: T(n,k) = binomial(n,k) for odd n.

%e The triangle stars in row n=0 with columns 0<=k<=n as

%e 1 rsum= 1

%e 1 1 rsum= 2

%e 1 0 1 rsum= 2

%e 1 3 3 1 rsum= 8

%e 1 0 4 0 1 rsum= 6

%e 1 5 10 10 5 1 rsum= 32

%e 1 0 9 0 9 0 1 rsum= 20

%e 1 7 21 35 35 21 7 1 rsum= 128

%e 1 0 16 0 44 0 16 0 1 rsum= 78

%e 1 9 36 84 126 126 84 36 9 1 rsum= 512

%e 1 0 25 0 100 0 100 0 25 0 1 rsum= 252

%e 1 11 55 165 330 462 462 330 165 55 11 1 rsum= 2048

%e 1 0 36 0 246 0 420 0 246 0 36 0 1 rsum= 986

%e 1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1 rsum= 8192

%e 1 0 49 0 441 0 1225 0 1225 0 441 0 49 0 1 rsum= 3432

%e 1 15 105 475 1365 3045 5095 6435 6435 5095 3045 1365 475 105 15 1 rsum= 33072

%e 1 0 64 0 880 0 3136 0 5292 0 3136 0 880 0 64 0 1 rsum= 13454

%e 1 17 136 680 2380 6188 12376 19448 24310 24310 19448 12376 6188 2380 680 136 17 1 rsum= 131072

%Y Cf. A045655, A283795.

%K tabl,nonn

%O 0,8

%A _R. J. Mathar_, Mar 16 2017