login
A283795
Triangle T(n,k) read by rows: the number of q-circulant n X n {0,1}-matrices where each row sum and each column sum equals k.
3
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 8, 14, 8, 1, 1, 20, 40, 40, 20, 1, 1, 12, 42, 44, 42, 12, 1, 1, 42, 126, 210, 210, 126, 42, 1, 1, 32, 136, 224, 350, 224, 136, 32, 1, 1, 54, 216, 546, 756, 756, 546, 216, 54, 1, 1, 40, 260, 480, 1200, 1032, 1200, 480, 260, 40, 1, 1, 110, 550, 1650, 3300, 4620, 4620, 3300, 1650, 550, 110, 1, 1, 48, 324, 992, 2538, 3168
OFFSET
0,5
COMMENTS
q-circulant matrices are constructed by fixing the first row and obtaining the remaining n-1 rows by circularly shifting values by q columns, any q from 0 to n-1.
The triangle is symmetric in each row because flipping 1's and 0's in a matrix gives also a circulant matrix with n-k ones in each row and column.
The number of 1-circulant matrices with k zeros in each row and each column is apparently given by Pascal's Triangle.
Is the column k=1 given by A002618?
LINKS
P. Zellini, On some properties of circulant matrices, Lin. Alg. Applic. 26 (1979) 31-43
EXAMPLE
The triangle starts in row n=0 and column k=0 as:
1 rsum= 1
1 1 rsum= 2
1 2 1 rsum= 4
1 6 6 1 rsum= 14
1 8 14 8 1 rsum= 32
1 20 40 40 20 1 rsum= 122
1 12 42 44 42 12 1 rsum= 154
1 42 126 210 210 126 42 1 rsum= 758
1 32 136 224 350 224 136 32 1 rsum= 1136
1 54 216 546 756 756 546 216 54 1 rsum= 3146
CROSSREFS
Cf. A045655.
Sequence in context: A338874 A338876 A260238 * A168641 A255914 A143185
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Mar 16 2017
STATUS
approved