login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly two elements.
12

%I #4 Mar 16 2017 12:22:14

%S 0,0,0,0,0,0,0,5,1,0,0,14,60,6,0,0,113,625,745,49,0,0,564,5432,10910,

%T 7298,272,0,0,2410,43793,169426,174447,62303,1376,0,0,10648,336614,

%U 2343698,4588054,2510456,496884,6620,0,0,45070,2456405,30330979

%N T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly two elements.

%C Table starts

%C .0.....0........0..........0.............0...............0.................0

%C .0.....0........5.........14...........113.............564..............2410

%C .0.....1.......60........625..........5432...........43793............336614

%C .0.....6......745......10910........169426.........2343698..........30330979

%C .0....49.....7298.....174447.......4588054.......109281786........2393467823

%C .0...272....62303....2510456.....112397437......4572654404......169720104148

%C .0..1376...496884...33933330....2592339953....179632502674....11308125156356

%C .0..6620..3767599..439118692...57256730323...6737192690688...719819137224851

%C .0.30552.27544383.5498459845.1224525471560.244126676935480.44286142978155009

%H R. H. Hardin, <a href="/A283784/b283784.txt">Table of n, a(n) for n = 1..161</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1)

%F k=2: [order 15]

%F k=3: [order 30]

%F k=4: [order 42]

%F Empirical for row n:

%F n=1: a(n) = a(n-1)

%F n=2: [order 15]

%F n=3: [order 33]

%F n=4: [order 69]

%e Some solutions for n=4 k=4

%e ..0..1..1..1. .0..1..1..1. .1..0..0..0. .1..1..0..1. .0..1..1..0

%e ..0..1..1..1. .1..1..0..0. .1..0..1..1. .0..1..1..1. .0..1..0..1

%e ..0..0..0..0. .0..1..0..1. .0..1..0..0. .0..1..0..0. .0..1..1..1

%e ..0..0..1..1. .1..0..0..0. .1..1..1..1. .1..1..1..0. .0..0..1..0

%Y Column 2 is A283226.

%K nonn,tabl

%O 1,8

%A _R. H. Hardin_, Mar 16 2017