Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Mar 16 2017 12:17:56
%S 0,14,625,10910,174447,2510456,33933330,439118692,5498459845,
%T 67121993862,802882295057,9444916323342,109571555114744,
%U 1256227000217798,14257060902385365,160383949024164060,1790320360619426367
%N Number of nX4 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly two elements.
%C Column 4 of A283784.
%H R. H. Hardin, <a href="/A283780/b283780.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 21*a(n-1) -75*a(n-2) -500*a(n-3) -681*a(n-4) +14070*a(n-5) +66834*a(n-6) +139032*a(n-7) -160275*a(n-8) -1405556*a(n-9) -3401838*a(n-10) -791658*a(n-11) +13175067*a(n-12) +36437481*a(n-13) +23855217*a(n-14) -68703699*a(n-15) -216054840*a(n-16) -171287535*a(n-17) +224531338*a(n-18) +760107903*a(n-19) +595077312*a(n-20) -505895393*a(n-21) -1576187241*a(n-22) -1019970015*a(n-23) +756331656*a(n-24) +1728765105*a(n-25) +791098521*a(n-26) -581764517*a(n-27) -828007422*a(n-28) -234508218*a(n-29) +151749818*a(n-30) +120782574*a(n-31) +37179264*a(n-32) +12003673*a(n-33) -692574*a(n-34) -4660656*a(n-35) -2434512*a(n-36) -906336*a(n-37) -352896*a(n-38) -94208*a(n-39) -17664*a(n-40) -3840*a(n-41) -512*a(n-42)
%e Some solutions for n=4
%e ..0..0..1..1. .1..1..0..0. .0..0..0..1. .1..1..0..1. .1..1..0..0
%e ..0..1..1..1. .1..1..0..1. .0..0..1..1. .1..0..1..1. .1..1..0..1
%e ..0..1..0..0. .1..0..1..0. .1..1..1..0. .0..0..1..0. .1..1..0..0
%e ..0..0..0..1. .1..0..1..1. .1..0..1..0. .0..1..0..0. .0..0..0..1
%Y Cf. A283784.
%K nonn
%O 1,2
%A _R. H. Hardin_, Mar 16 2017