login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX5 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors.
1

%I #4 Mar 14 2017 16:13:54

%S 32,548,8687,149840,2530461,42865601,726353972,12304063774,

%T 208447516852,3531328722756,59824505590044,1013492650583988,

%U 17169667356710287,290872863087155706,4927703087078297854,83480656440703152310

%N Number of nX5 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors.

%C Column 5 of A283691.

%H R. H. Hardin, <a href="/A283688/b283688.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 14*a(n-1) +29*a(n-2) +280*a(n-3) +866*a(n-4) +7560*a(n-5) -15216*a(n-6) -103844*a(n-7) -382425*a(n-8) +41082*a(n-9) +1766018*a(n-10) +5274831*a(n-11) +4250191*a(n-12) +1787098*a(n-13) -6022845*a(n-14) -10585488*a(n-15) -37960570*a(n-16) -50768733*a(n-17) -22088020*a(n-18) +45185414*a(n-19) +74517081*a(n-20) +51074574*a(n-21) +25245387*a(n-22) -4384455*a(n-23) -8853491*a(n-24) -2074893*a(n-25) +3542336*a(n-26) +1834829*a(n-27) -396742*a(n-28) -450606*a(n-29) -1052924*a(n-30) -261819*a(n-31) +18221*a(n-32) +82756*a(n-33) +1707*a(n-34) +6452*a(n-35) +6158*a(n-36) +1084*a(n-37) +688*a(n-38) -1304*a(n-39) +192*a(n-40)

%e Some solutions for n=4

%e ..0..1..0..0..0. .0..0..0..0..0. .0..1..0..0..1. .0..1..0..0..1

%e ..1..0..0..0..0. .0..1..0..0..1. .0..0..0..0..0. .1..0..0..0..1

%e ..0..0..0..1..1. .0..0..0..1..0. .1..1..0..1..1. .0..1..0..0..1

%e ..1..1..0..0..1. .0..1..1..0..0. .0..0..0..0..1. .0..1..0..0..1

%Y Cf. A283691.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 14 2017