login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = lcm(q(n - q(n+1) + 2), q(n - q(n) + 2)) where q(n) = A005185(n).
3

%I #19 Mar 23 2017 14:40:11

%S 1,2,2,2,6,6,3,3,3,4,15,4,5,20,5,30,30,6,6,6,6,8,24,24,8,8,8,8,10,72,

%T 72,10,110,90,99,11,110,11,132,132,12,12,12,12,12,16,70,154,112,48,84,

%U 112,112,14,16,112,16,16,16,16,20,272,238,357,304,272,380,20,340,357,399

%N a(n) = lcm(q(n - q(n+1) + 2), q(n - q(n) + 2)) where q(n) = A005185(n).

%C See the order of chaotic subsequences in scatterplot link.

%H Altug Alkan, <a href="/A283673/b283673.txt">Table of n, a(n) for n = 1..10000</a>

%H Altug Alkan, <a href="/A283673/a283673.png">Alternative Scatterplot of A283673</a>

%e a(4) = lcm(A005185(4 - A005185(5) + 2), A005185(4 - A005185(4) + 2)) = lcm(A005185(3), A005185(3)) = lcm(2, 2) = 2.

%t q[1] = q[2] = 1; q[n_] := q[n] = q[n - q[n - 1]] + q[n - q[n - 2]]; Table[LCM[q[n - q[n + 1] + 2], q[n - q[n] + 2]], {n, 71}] (* _Indranil Ghosh_, Mar 14 2017 *)

%o (PARI) a=vector(1001); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); va = vector(1000, n, lcm(a[n+2-a[n+1]],a[n+2-a[n]]))

%Y Cf. A005185, A283672, A283677.

%K nonn,look

%O 1,2

%A _Altug Alkan_, Mar 14 2017