login
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 694", based on the 5-celled von Neumann neighborhood.
4

%I #9 Mar 16 2017 15:00:19

%S 1,3,5,13,21,53,93,205,349,845,1501,3277,5597,13517,24029,52685,89565,

%T 216525,384477,839117,1433053,3460557,6151645,13487565,22928861,

%U 55430605,98426333,214814157,366861789,885902797,1574821341,3452816845,5869788637,14190235085

%N Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 694", based on the 5-celled von Neumann neighborhood.

%C Initialized with a single black (ON) cell at stage zero.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

%H Robert Price, <a href="/A283646/b283646.txt">Table of n, a(n) for n = 0..126</a>

%H Robert Price, <a href="/A283646/a283646.tmp.txt">Diagrams of first 20 stages</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, Mar 14 2017: (Start)

%F G.f.: (1 + 3*x + 4*x^2 + 10*x^3 + 16*x^4 + 40*x^5 + 72*x^6 + 152*x^7 - 128*x^9 + 128*x^10 - 128*x^11 + 256*x^15) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)*(1 + 4*x^2)*(1 + 16*x^4)).

%F a(n) = a(n-2) + 256*a(n-8) - 256*a(n-10) for n>11.

%F (End)

%t CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];

%t code = 694; stages = 128;

%t rule = IntegerDigits[code, 2, 10];

%t g = 2 * stages + 1; (* Maximum size of grid *)

%t a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)

%t ca = a;

%t ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];

%t PrependTo[ca, a];

%t (* Trim full grid to reflect growth by one cell at each stage *)

%t k = (Length[ca[[1]]] + 1)/2;

%t ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];

%t Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]

%Y Cf. A283644, A283645, A283647.

%K nonn,easy

%O 0,2

%A _Robert Price_, Mar 12 2017