Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 10 2021 22:02:18
%S 1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,21845,43691,87381,
%T 174763,349525,699051,1398101,2796203,5592405,11184811,22369621,
%U 44739243,89478485,178956971,357913941,715827883,1431655765,2863311531,5726623061,11453246123
%N Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 678", based on the 5-celled von Neumann neighborhood.
%C Initialized with a single black (ON) cell at stage zero.
%C Similar to A001045.
%C It is not difficult to prove that one has indeed a(n) = round(4*2^n/3) = A001045(n+2) for all n. The proof as well as the growth of the pattern is nearly identical to that of the toothpick sequence A139250. - _M. F. Hasler_, Feb 13 2020
%C The decimal representations of the n-th interval of elementary cellular automata rules 28 and 156 (see A266502 and A266508) generate this sequence. - _Karl V. Keller, Jr._, Sep 03 2021
%H Robert Price, <a href="/A283642/b283642.txt">Table of n, a(n) for n = 0..126</a>
%H Robert Price, <a href="/A283642/a283642.tmp.txt">Diagrams of first 20 stages</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 170.
%H Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,2).
%F From _Colin Barker_, Mar 14 2017: (Start)
%F G.f.: (1 + 2*x) / ((1 + x)*(1 - 2*x)).
%F a(n) = (2^(n+2) - 1) / 3 for n even.
%F a(n) = (2^(n+2) + 1) / 3 for n odd.
%F a(n) = a(n-1) + 2*a(n-2) for n>1.
%F (End)
%F I.e., a(n) = A001045(n+2) = A154917(n+2) = A167167(n+2) = |A077925(n+1)| = A328284(n+5) = round(4*2^n/3), cf. comments. - _M. F. Hasler_, Feb 13 2020
%F E.g.f.: (4*exp(2*x) - exp(-x))/3. - _Stefano Spezia_, Feb 13 2020
%F a(n) = floor((4*2^n + 1)/3). - _Karl V. Keller, Jr._, Sep 03 2021
%t CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t code = 678; stages = 128;
%t rule = IntegerDigits[code, 2, 10];
%t g = 2 * stages + 1; (* Maximum size of grid *)
%t a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t ca = a;
%t ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t PrependTo[ca, a];
%t (* Trim full grid to reflect growth by one cell at each stage *)
%t k = (Length[ca[[1]]] + 1)/2;
%t ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i ,1, stages - 1}]
%o (Python) print([(4*2**n + 1)//3 for n in range(50)]) # _Karl V. Keller, Jr._, Sep 03 2021
%Y Cf. A283641, A266502, A266508, A086893, A001045.
%K nonn,easy
%O 0,2
%A _Robert Price_, Mar 12 2017