login
A283634
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly two elements.
12
0, 0, 0, 0, 0, 0, 1, 0, 6, 0, 2, 36, 37, 28, 0, 5, 88, 639, 388, 142, 0, 13, 516, 2875, 7742, 3729, 606, 0, 29, 2076, 21963, 61592, 85469, 28828, 2458, 0, 65, 7372, 127635, 700534, 1185010, 856710, 203025, 9520, 0, 143, 27108, 693783, 6345928, 19517898, 20051838
OFFSET
1,9
COMMENTS
Table starts
.0......0........0..........1............2...............5................13
.0......0........0.........36...........88.............516..............2076
.0......6.......37........639.........2875...........21963............127635
.0.....28......388.......7742........61592..........700534...........6345928
.0....142.....3729......85469......1185010........19517898.........272974255
.0....606....28828.....856710.....20051838.......490925804.......10666178322
.0...2458...203025....8209582....317384829.....11651389723......392539665568
.0...9520..1325980...75625580...4754748994....264077146748....13797245749346
.0..35678..8216341..677582140..68462751532...5787991095939...468742166961530
.0.130398.48912768.5935472812.955500406758.123521985310158.15502521715119538
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [order 12]
k=3: [order 18]
k=4: [order 24]
k=5: [order 63]
k=6: [order 81]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -2*a(n-3) -6*a(n-4) +4*a(n-6) +6*a(n-7) +3*a(n-8) +a(n-9)
n=2: [order 9]
n=3: [order 18]
n=4: [order 24] for n>26
n=5: [order 63]
n=6: [order 96]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..1. .0..0..0..0. .0..0..0..1. .0..1..1..0. .0..1..1..1
..1..1..0..1. .1..0..0..1. .0..1..0..0. .1..0..1..0. .0..0..0..0
..1..0..1..1. .1..1..1..1. .0..1..0..1. .0..0..0..1. .0..1..1..1
..0..0..0..0. .0..0..0..1. .1..0..1..0. .0..1..0..0. .0..0..0..0
CROSSREFS
Column 2 is A283094.
Row 1 is A282831.
Sequence in context: A366349 A075092 A152244 * A372064 A179641 A110993
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 12 2017
STATUS
approved