%I #4 Mar 11 2017 08:19:25
%S 0,16,169,674,4313,21186,104464,513458,2431143,11478378,53471911,
%T 246887096,1132514276,5160569268,23395062541,105570183858,
%U 474452680669,2124725208078,9484785230640,42219767106150,187451695326747
%N Number of 3Xn 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
%C Row 3 of A283572.
%H R. H. Hardin, <a href="/A283574/b283574.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) +10*a(n-2) -6*a(n-3) -105*a(n-4) -108*a(n-5) -85*a(n-6) -14*a(n-7) -250*a(n-8) +176*a(n-9) -145*a(n-10) +44*a(n-11) -4*a(n-12)
%e Some solutions for n=4
%e ..1..1..0..1. .0..1..0..0. .0..1..1..0. .0..0..0..0. .1..0..1..0
%e ..1..0..0..0. .0..1..0..0. .1..0..0..0. .0..1..1..0. .1..0..0..1
%e ..0..0..1..0. .1..1..0..1. .1..0..1..0. .0..1..0..1. .1..0..1..0
%Y Cf. A283572.
%K nonn
%O 1,2
%A _R. H. Hardin_, Mar 11 2017