%I #15 Mar 14 2017 00:30:13
%S 1,1,3,2,2,6,6,24,24,120
%N The number of positive integer sequences of length n with no duplicate substrings and a minimal product (i.e., the product of the sequence is A282164(n)).
%H Peter Kagey, <a href="/A283557/a283557.txt">Examples of all sequences a(1)-a(10)</a>.
%e For n = 7, the a(7) = 6 sequences are
%e 1,3,1,2,2,1,1;
%e 1,2,2,1,3,1,1;
%e 1,3,1,1,2,2,1;
%e 1,1,3,1,2,2,1;
%e 1,2,2,1,1,3,1; and
%e 1,1,2,2,1,3,1.
%Y Cf. A282164. A283558 is the sum analog.
%K nonn,more
%O 1,3
%A _Peter Kagey_, Mar 10 2017