login
The number of positive integer sequences of length n with no duplicate substrings and a minimal product (i.e., the product of the sequence is A282164(n)).
2

%I #15 Mar 14 2017 00:30:13

%S 1,1,3,2,2,6,6,24,24,120

%N The number of positive integer sequences of length n with no duplicate substrings and a minimal product (i.e., the product of the sequence is A282164(n)).

%H Peter Kagey, <a href="/A283557/a283557.txt">Examples of all sequences a(1)-a(10)</a>.

%e For n = 7, the a(7) = 6 sequences are

%e 1,3,1,2,2,1,1;

%e 1,2,2,1,3,1,1;

%e 1,3,1,1,2,2,1;

%e 1,1,3,1,2,2,1;

%e 1,2,2,1,1,3,1; and

%e 1,1,2,2,1,3,1.

%Y Cf. A282164. A283558 is the sum analog.

%K nonn,more

%O 1,3

%A _Peter Kagey_, Mar 10 2017