%I #4 Mar 08 2017 14:16:23
%S 0,0,0,0,0,0,0,2,2,0,0,12,59,12,0,0,64,576,576,64,0,0,312,5444,10000,
%T 5444,312,0,0,1460,47712,174232,174232,47712,1460,0,0,6624,402588,
%U 2836520,5691512,2836520,402588,6624,0,0,29394,3304736,44556288
%N T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than three of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.
%C Table starts
%C .0.....0........0...........0.............0................0..................0
%C .0.....0........2..........12............64..............312...............1460
%C .0.....2.......59.........576..........5444............47712.............402588
%C .0....12......576.......10000........174232..........2836520...........44556288
%C .0....64.....5444......174232.......5691512........173139952.........5074155320
%C .0...312....47712.....2836520.....173139952.......9816981756.......536229705204
%C .0..1460...402588....44556288....5074155320.....536229705204.....54620836862500
%C .0..6624..3304736...682531252..145077026768...28589370541536...5432594465187864
%C .0.29394.26585976.10259419732.4069261870596.1495349029171972.530096184197639160
%H R. H. Hardin, <a href="/A283494/b283494.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: [order 10]
%F k=3: [order 10] for n>13
%F k=4: [order 26] for n>29
%F k=5: [order 74] for n>77
%e Some solutions for n=4 k=4
%e ..0..1..1..0. .0..1..1..1. .1..1..0..0. .1..1..0..1. .0..1..0..0
%e ..0..1..1..0. .0..0..1..1. .0..1..0..1. .0..1..1..1. .1..1..1..1
%e ..1..1..0..0. .1..0..1..0. .0..0..1..1. .0..0..1..0. .0..1..0..0
%e ..0..0..1..0. .0..0..1..0. .1..1..1..0. .0..0..0..1. .0..0..1..1
%K nonn,tabl
%O 1,8
%A _R. H. Hardin_, Mar 08 2017
|