login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek).
41

%I #75 Dec 08 2022 11:55:23

%S 1,2,6,12,30,60,180,360,210,420,1260,2520,6300,12600,37800,75600,2310,

%T 4620,13860,27720,69300,138600,415800,831600,485100,970200,2910600,

%U 5821200,14553000,29106000,87318000,174636000,30030,60060,180180,360360,900900,1801800,5405400,10810800,6306300,12612600,37837800,75675600

%N If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek).

%C a(n) = Product of distinct primorials larger than one, obtained as Product_{i} A002110(1+i), where i ranges over the zero-based positions of the 1-bits present in the binary representation of n.

%C This sequence can be represented as a binary tree. Each child to the left is obtained as A283980(k), and each child to the right is obtained as 2*A283980(k), when their parent contains k:

%C 1

%C |

%C ...................2....................

%C 6 12

%C 30......../ \........60 180......../ \......360

%C / \ / \ / \ / \

%C / \ / \ / \ / \

%C / \ / \ / \ / \

%C 210 420 1260 2520 6300 12600 37800 75600

%C etc.

%H Antti Karttunen, <a href="/A283477/b283477.txt">Table of n, a(n) for n = 0..4095</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>

%F a(0) = 1; a(2n) = A283980(a(n)), a(2n+1) = 2*A283980(a(n)).

%F Other identities. For all n >= 0 (or for n >= 1):

%F a(2n+1) = 2*a(2n).

%F a(n) = A108951(A019565(n)).

%F A097248(a(n)) = A283475(n).

%F A007814(a(n)) = A051903(a(n)) = A000120(n).

%F A001221(a(n)) = A070939(n).

%F A001222(a(n)) = A029931(n).

%F A048675(a(n)) = A005187(n).

%F A248663(a(n)) = A006068(n).

%F A090880(a(n)) = A283483(n).

%F A276075(a(n)) = A283984(n).

%F A276085(a(n)) = A283985(n).

%F A046660(a(n)) = A124757(n).

%F A056169(a(n)) = A065120(n). [seems to be]

%F A005361(a(n)) = A284001(n).

%F A072411(a(n)) = A284002(n).

%F A007913(a(n)) = A284003(n).

%F A000005(a(n)) = A284005(n).

%F A324286(a(n)) = A324287(n).

%F A276086(a(n)) = A324289(n).

%F A267263(a(n)) = A324341(n).

%F A276150(a(n)) = A324342(n). [subsequences in the latter are converging towards this sequence]

%F G.f.: Product_{k>=0} (1 + prime(k + 1)# * x^(2^k)), where prime()# = A002110. - _Ilya Gutkovskiy_, Aug 19 2019

%t Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 43}] (* _Michael De Vlieger_, Mar 18 2017 *)

%o (PARI) A283477(n) = prod(i=0,exponent(n),if(bittest(n,i),vecprod(primes(1+i)),1)) \\ Edited by _M. F. Hasler_, Nov 11 2019

%o (Scheme)

%o (define (A283477 n) (A108951 (A019565 n)))

%o ;; Recursive "binary tree" implementation, using memoization-macro definec:

%o (definec (A283477 n) (cond ((zero? n) 1) ((even? n) (A283980 (A283477 (/ n 2)))) (else (* 2 (A283980 (A283477 (/ (- n 1) 2)))))))

%o (Python)

%o from sympy import prime, primerange, factorint

%o from operator import mul

%o from functools import reduce

%o def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])

%o def a108951(n):

%o f = factorint(n)

%o return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])

%o def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after _Chai Wah Wu_

%o def a(n): return a108951(a019565(n))

%o print([a(n) for n in range(101)]) # _Indranil Ghosh_, Jun 22 2017

%o (Python)

%o from sympy import primorial

%o from math import prod

%o def A283477(n): return prod(primorial(i) for i, b in enumerate(bin(n)[:1:-1],1) if b =='1') # _Chai Wah Wu_, Dec 08 2022

%Y Cf. A129912 (same terms, but sorted into ascending order).

%Y Cf. A000120, A001221, A001222, A002110, A005187, A005361, A006068, A007814, A007913, A019565, A029931, A030308, A046660, A048675, A051903, A056169, A065120, A070939, A072411, A090880, A097248, A108951, A124757, A248663, A276075, A276085, A283475, A283483, A283980, A283984, A283985, A284001, A284002, A284003, A284005, A324287, A324289, A324341, A324342, A324343.

%Y Cf. A005940, A052330, A322827, A323505 for other similar trees.

%Y Cf. also A260443.

%K nonn

%O 0,2

%A _Antti Karttunen_, Mar 16 2017

%E More formulas and the binary tree illustration added by _Antti Karttunen_, Mar 19 2017

%E Four more linking formulas added by _Antti Karttunen_, Feb 25 2019