login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Second-largest prime factor of 2^n - 1, if composite, or 1 otherwise.
1

%I #10 Aug 26 2017 14:47:13

%S 1,1,3,1,3,1,5,7,11,23,7,1,43,31,17,1,19,1,31,127,89,47,17,601,2731,

%T 73,113,1103,151,1,257,89,43691,127,73,223,174763,8191,41,13367,337,

%U 9719,683,631,178481,4513,257,127,1801,11119,2731

%N Second-largest prime factor of 2^n - 1, if composite, or 1 otherwise.

%C For clarification: if the largest prime factor occurs more than once, then that prime factor is selected.

%H Charles R Greathouse IV, <a href="/A283461/b283461.txt">Table of n, a(n) for n = 2..1206</a>

%F a(n) = A006530(A000225(n)/A005420(n)).

%t a[n_] := If[PrimeQ[2^n-1], 1, Block[{f = FactorInteger[2^n-1]}, If[f[[-1, 2]] == 1, f[[-2, 1]], f[[-1, 1]]]]]; a /@ Range[2, 52] (* _Giovanni Resta_, Mar 08 2017 *)

%o (PARI) a(n)=my(f=factor(2^n-1),t=#f~); if(f[t,2]>1, f[t,1], if(t>1, f[t-1,1], 1))

%Y Cf. A005420, A193615, A006530, A000225, A108974.

%K nonn

%O 2,3

%A _Charles R Greathouse IV_, Mar 08 2017