login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The square root of the smallest square referenced in A249025 (Numbers k such that 3^k - 1 is not squarefree).
3

%I #27 Feb 12 2021 04:07:15

%S 2,2,11,2,2,2,2,2,11,2,2,2,2,2,11,2,2,2,2,2,11,2,2,13,2,2,2,11,2,2,2,

%T 2,2,11,2,2,2,2,2,11,2,2,2,2,2,11,2,2,2,2,2,11,2,2,2,2,2,11,2,2,2,2,2,

%U 11,2,2,2,2,2,11,2,13,2,2,2,2,11,2,2,2,2,2,11

%N The square root of the smallest square referenced in A249025 (Numbers k such that 3^k - 1 is not squarefree).

%C The terms are the smallest prime whose square divides 3^k-1, when it is not squarefree.

%H Amiram Eldar, <a href="/A283454/b283454.txt">Table of n, a(n) for n = 1..407</a> (terms 1..121 from Michel Marcus)

%F a(n) = A249739(A024023(A249025(n))). - _Amiram Eldar_, Feb 12 2021

%e A249025(3)=5, 3^5-1 = 242 = 2*11*11. 242 is not squarefree the square being 11*11 = 121, the root being 11.

%t p[n_] := If[(f = Select[FactorInteger[n], Last[#] > 1 &]) == {}, 1, f[[1, 1]]]; p /@ Select[3^Range[100] - 1, !SquareFreeQ[#] &] (* _Amiram Eldar_, Feb 12 2021 *)

%o (PARI) lista(nn) = {for (n=1, nn, if (!issquarefree(k = 3^n-1), f = factor(k/core(k)); vsq = select(x->((x%2) == 0), f[,2], 1); print1(f[vsq[1], 1], ", ");););} \\ _Michel Marcus_, Mar 11 2017

%Y Cf. A024023, A046027, A249025, A249739, A283453.

%K nonn

%O 1,1

%A _Robert Price_, Mar 07 2017

%E More terms from _Michel Marcus_, Mar 11 2017