login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Least prime p such that n*(p^n-1)+1 is prime.
2

%I #14 Oct 11 2017 05:06:43

%S 2,2,3,2,19,2,5,17,13,7,1129,59,47,7,19,7,31,79,11,37,199,5,907,43,5,

%T 43,3,13,919,2,13,2,263,127,241,3,131,71,11,421,223,2,31,3,7,89,3673,

%U 61,293,5,131,919,3,3,349,457,1091,461,67,7,331,7177,571,43,1621,109,2521,3,1061,5,967,1093,1423

%N Least prime p such that n*(p^n-1)+1 is prime.

%C a(n) is the least prime p such that p^n is in A280257.

%C The generalized Dickson conjecture would imply that a(n) exists for all n.

%C a(n) = 2 for n in A046847.

%H Robert Israel, <a href="/A283450/b283450.txt">Table of n, a(n) for n = 1..600</a>

%e For n=5, 5*(19^5-1)+1 = 12380491 is prime, but 5*(p^5-1)+1 is not prime for primes p < 19, so a(5)=19.

%p f:= proc(n) local p;

%p p:= 2:

%p while not isprime(n*(p^n-1)+1) do p:= nextprime(p) od;

%p p

%p end proc:

%p map(f, [$1..100]);

%t Table[p=2; While[!PrimeQ[n (p^n-1)+1], p=NextPrime@p]; p, {n, 100}] (* _Vincenzo Librandi_, Oct 11 2017 *)

%o (PARI) a(n)=forprime(p=2,, if(ispseudoprime(n*(p^n-1)+1), return(p))) \\ _Charles R Greathouse IV_, Mar 07 2017

%Y Cf. A046847, A280257.

%K nonn

%O 1,1

%A _Robert Israel_, Mar 07 2017