Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 May 20 2017 22:20:38
%S 0,1,2,1,2,3,2,3,2,3,2,3,4,3,4,3,4,3,4,3,4,5,4,5,4,5,4,5,4,5,4,5,6,5,
%T 6,5,6,5,6,5,6,5,6,5,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,8,7,8,7,8,7,
%U 8,7,8,7,8,7,8,7,8,7,8,9,8,9
%N a(n) is the number of zeros of the Hermite H(n, x) polynomial in the open interval (-1, +1).
%C The Hermite polynomials satisfy the following recurrence relation:
%C H(0,x) = 1,
%C H(1,x) = 2*x,
%C H(n,x) = 2*x*H(n-1,x) - 2*(n-1)*H(n-2,x).
%C The first few Hermite polynomials are:
%C H(0,x) = 1
%C H(1,x) = 2x
%C H(2,x) = 4x^2 - 2
%C H(3,x) = 8x^3 - 12x
%C H(4,x) = 16x^4 - 48x^2 + 12
%C H(5,x) = 32x^5 - 160x^3 + 120x
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial.</a>
%H <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a>
%F Conjecture: a(n) = A257564(n+2).
%e a(5) = 3 because the zeros of H(5,x) = 32x^5 - 160x^3 + 120x are x1 = -2.0201828..., x2 = -.9585724..., x3 = 0., x4 = .9585724... and x5 = 2.020182... with three roots x2, x3 and x4 in the open interval (-1, +1).
%p for n from 0 to 90 do:it:=0:
%p y:=[fsolve(expand(HermiteH(n,x)),x,real)]:for m from 1 to nops(y) do:if abs(y[m])<1 then it:=it+1:else fi:od: printf(`%d, `, it):od:
%t a[n_] := Length@ List@ ToRules@ Reduce[ HermiteH[n, x] == 0 && -1 < x < 1, x]; Array[a, 82, 0] (* _Giovanni Resta_, May 17 2017 *)
%Y Cf. A054373, A054374, A059343, A008611, A096713, A257564, A285872.
%K nonn
%O 0,3
%A _Michel Lagneau_, May 16 2017