login
Number of nX3 0..1 arrays with no 1 equal to more than two of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.
1

%I #4 Mar 05 2017 10:20:24

%S 0,6,71,572,4398,31952,224927,1546856,10453311,69685558,459502052,

%T 3002936368,19478808736,125554496370,804907528188,5135894512268,

%U 32635990233297,206632022781320,1304047329026174,8205995071868288

%N Number of nX3 0..1 arrays with no 1 equal to more than two of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.

%C Column 3 of A283347.

%H R. H. Hardin, <a href="/A283342/b283342.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 10*a(n-1) -13*a(n-2) -60*a(n-3) -50*a(n-4) +70*a(n-5) +78*a(n-6) +38*a(n-7) -57*a(n-8) -28*a(n-9) -18*a(n-10) +56*a(n-11) -37*a(n-12) +24*a(n-13) -28*a(n-14) +16*a(n-15) -4*a(n-16)

%e Some solutions for n=4

%e ..0..0..1. .0..0..0. .0..1..0. .1..0..1. .1..1..1. .1..0..1. .0..0..0

%e ..0..1..1. .1..0..1. .0..0..0. .0..1..1. .1..0..1. .0..1..1. .1..0..0

%e ..1..0..0. .1..1..0. .1..1..1. .0..0..1. .0..1..0. .1..0..0. .1..1..1

%e ..0..1..1. .0..1..1. .1..0..0. .0..0..0. .0..0..1. .0..1..1. .0..1..0

%Y Cf. A283347.

%K nonn

%O 1,2

%A _R. H. Hardin_, Mar 05 2017