login
Image of 0 under repeated applications of the morphism 0 -> 0,0,0,0,1, 1 -> 1,1,1,1,0.
3

%I #18 Feb 07 2021 19:18:43

%S 0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,

%T 1,0,0,0,0,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,

%U 0,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,1,1,1,1,0,1

%N Image of 0 under repeated applications of the morphism 0 -> 0,0,0,0,1, 1 -> 1,1,1,1,0.

%H André Bernardino, Rui Pacheco, and Manuel Silva, <a href="https://doi.org/10.1016/j.disc.2016.09.013">Coloring factors of substitutive infinite words</a>, Discrete Mathematics 340.3 (2017): 443-451. Also <a href="https://arxiv.org/abs/1605.09343">arXiv:1605.09343</a> [math.CO], 2016. See Section 4.

%H J. Justin and G. Pirillo, <a href="http://dx.doi.org/10.1016/0012-365X(84)90092-X">Two combinatorial properties of partitions of the free semigroup into finitely many parts</a>, Discrete Mathematics, 52, 2-3, (1984), pp. 299-303. See p. 302.

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%p with(ListTools);

%p psi:=proc(S)

%p Flatten(subs( {0=[0,0,0,0,1], 1=[1,1,1,1,0]}, S));

%p end;

%p S:=[0];

%p for n from 1 to 6 do S:=psi(S): od:

%p S;

%t SubstitutionSystem[{0 -> {0, 0, 0, 0, 1}, 1 -> {1, 1, 1, 1, 0}}, {0}, 3] // Last (* _Jean-François Alcover_, Jan 21 2018 *)

%Y Cf. A283316.

%K nonn

%O 1

%A _N. J. A. Sloane_, Mar 08 2017