Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jun 18 2018 09:17:47
%S 0,0,-1,1,0,-1,1,-1,1,0,-2,2,0,-1,1,-2,2,-2,2,-1,1,-2,2,-2,2,0,-3,3,0,
%T -1,1,-3,3,-3,3,-1,1,-2,2,-3,3,-3,3,-2,2,0,-4,4,0,-1,1,-4,4,-4,4,-1,1,
%U -3,3,-3,3,-2,2,-4,4,-4,4,-2,2,0,-3,3,-4,4,-5,5,-4,4,-3,3,0,-1,1,-5,5,-5,5
%N List points (x,y) having integer coordinates, sorted first by x^2+y^2 and in case of ties, by x-coordinate and then by y-coordinate. Sequence gives y-coordinates.
%e The first few points (listing [x^2+y^2,x,y]) are: [0, 0, 0], [1, -1, 0], [1, 0, -1], [1, 0, 1], [1, 1, 0], [2, -1, -1], [2, -1, 1], [2, 1, -1], [2, 1, 1], [4, -2, 0], [4, 0, -2], [4, 0, 2], [4, 2, 0], [5, -2, -1], [5, -2, 1], [5, -1, -2], [5, -1, 2], [5, 1, -2], [5, 1, 2], [5, 2, -1], [5, 2, 1], [8, -2, -2], [8, -2, 2], [8, 2, -2], ...
%p L:=[];
%p M:=30;
%p for i from -M to M do
%p for j from -M to M do
%p L:=[op(L),[i^2+j^2,i,j]]; od: od:
%p t6:= sort(L,proc(a,b) evalb(a[1]<=b[1]); end);
%p t6x:=[seq(t6[i][2],i=1..100)]; # A283307
%p t6y:=[seq(t6[i][3],i=1..100)]; # A283308
%o (PARI) rs(t)=round(sqrt(abs(t)));pt(t)=print1(rs(t)*sign(t),", ");for(r2=0,26,xm=rs(r2);for(x=-xm,xm,y2=r2-x^2;if(issquare(y2),if(y2==0,pt(0),pt(-y2);pt(y2))))) \\ _Hugo Pfoertner_, Jun 18 2018
%Y For the x coordinates see A283307.
%Y Cf. A004018, A228108, A283303, A283304, A283305, A283306, A305575, A305576.
%K sign
%O 1,11
%A _N. J. A. Sloane_, Mar 04 2017, following a suggestion from _Ahmet Arduç_