login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of exp( Sum_{n>=1} -sigma_5(n)*x^n/n ) in powers of x.
9

%I #15 Mar 05 2017 02:51:19

%S 1,-1,-16,-65,-55,807,4809,13135,550,-169070,-862710,-2281174,

%T -1221309,20194565,114391575,346400092,486546751,-1239516671,

%U -11089537215,-41702958960,-93143227027,-45337210750,674845109986,3682196642725,11405949184465,20796945542222

%N Expansion of exp( Sum_{n>=1} -sigma_5(n)*x^n/n ) in powers of x.

%H Seiichi Manyama, <a href="/A283271/b283271.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: Product_{n>=1} (1 - x^n)^(n^4).

%F a(n) = -(1/n)*Sum_{k=1..n} sigma_5(k)*a(n-k).

%Y Column k=4 of A283272.

%Y Cf. A023873 (exp( Sum_{n>=1} sigma_5(n)*x^n/n )).

%Y Cf. exp( Sum_{n>=1} -sigma_k(n)*x^n/n ): A010815 (k=1), A073592 (k=2), A283263 (k=3), A283264 (k=4), this sequence (k=5).

%K sign

%O 0,3

%A _Seiichi Manyama_, Mar 04 2017