Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 03 2017 20:34:43
%S 0,1,1,2,1,4,3,4,1,8,7,11,4,11,7,8,1,16,15,23,8,20,12,19,7,19,12,20,8,
%T 23,15,16,1,32,31,55,24,48,24,39,15,57,42,70,28,48,20,28,8,28,20,48,
%U 28,70,42,57,15,39,24,48,24,55,31,32,1,64,63,95,32,104,72,132,60,184,124,184,60,116,56,80,24,104,80,176,96,240,144,200,56,180,124
%N a(0) = 0; a(1) = 1; a(2*n) = sigma(a(n)), a(2*n+1) = sigma(a(n)) + sigma(a(n+1)).
%C A variation on Stern's diatomic sequence (A002487) and iterating the sum of the divisors function (A007497).
%H Indranil Ghosh, <a href="/A283166/b283166.txt">Table of n, a(n) for n = 0..10000</a>
%H Michael Gilleland, <a href="/selfsimilar.html">Some Self-Similar Integer Sequences</a>
%H Ilya Gutkovskiy, <a href="/A283166/a283166.pdf">Extended graphical example</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%e a(0) = 0;
%e a(1) = 1;
%e a(2) = a(2*1) = sigma(a(1)) = sigma(1) = 1;
%e a(3) = a(2*1+1) = sigma(a(1)) + sigma(a(2)) = sigma(1) + sigma(1) = 1 + 1 = 2;
%e a(4) = a(2*2) = sigma(a(2)) = sigma(1) = 1;
%e a(5) = a(2*2+1) = sigma(a(2)) + sigma(a(3)) = sigma(1) + sigma(2) = 1 + 3 = 4, etc.
%t a[0] = 0; a[1] = 1; a[n_] := If[EvenQ[n], DivisorSigma[1, a[n/2]], DivisorSigma[1, a[(n - 1)/2]] + DivisorSigma[1, a[(n + 1)/2]]]; Table[a[n], {n, 0, 90}]
%o (PARI)
%o a(n) = if (n<2, n, if (n%2==0, sigma(a(n/2)), sigma(a((n-1)/2))+sigma(a((n+1)/2))));
%o tabl(nn)={for (n=0, nn, print1(a(n), ", "); ); };
%o tabl(90); \\ _Indranil Ghosh_, Mar 03 2017
%Y Cf. A000203, A002487, A007497.
%K nonn
%O 0,4
%A _Ilya Gutkovskiy_, Mar 02 2017