login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283100
T(n,k) = Number of n X k 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors, with the exception of exactly two elements.
8
0, 0, 0, 0, 0, 0, 1, 6, 6, 1, 2, 28, 72, 28, 2, 5, 142, 600, 600, 142, 5, 13, 606, 4607, 8536, 4607, 606, 13, 29, 2458, 31669, 107007, 107007, 31669, 2458, 29, 65, 9520, 208949, 1237504, 2231690, 1237504, 208949, 9520, 65, 143, 35678, 1324269, 13563911
OFFSET
1,8
COMMENTS
Table starts
..0.....0.......0..........1............2..............5...............13
..0.....0.......6.........28..........142............606.............2458
..0.....6......72........600.........4607..........31669...........208949
..1....28.....600.......8536.......107007........1237504.........13563911
..2...142....4607.....107007......2231690.......42681282........774403237
..5...606...31669....1237504.....42681282.....1354321470......40737147156
.13..2458..208949...13563911....774403237....40737147156....2028744947006
.29..9520.1324269..142827186..13508097744..1177012522158...97051820977159
.65.35678.8152245.1460284133.228643318057.32993790452893.4503103658479576
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-3) -6*a(n-4) +4*a(n-6) +6*a(n-7) +3*a(n-8) +a(n-9).
k=2: [order 12]
k=3: [order 27]
k=4: [order 46]
EXAMPLE
Some solutions for n=4, k=4
..0..0..1..1. .1..0..0..0. .0..0..0..0. .0..1..0..0. .0..0..0..1
..1..0..0..1. .0..0..0..1. .1..1..0..1. .1..1..0..0. .0..1..1..1
..0..0..0..1. .0..0..1..0. .1..0..1..0. .0..1..0..1. .1..0..0..0
..0..1..0..0. .1..1..1..1. .0..0..1..1. .0..1..0..0. .0..0..0..0
CROSSREFS
Column 1 is A282831.
Sequence in context: A176565 A176567 A372272 * A065493 A133890 A248059
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 28 2017
STATUS
approved