login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX3 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors, with the exception of exactly two elements.
1

%I #4 Feb 28 2017 10:58:06

%S 0,6,72,600,4607,31669,208949,1324269,8152245,49070731,289979290,

%T 1687730558,9698213032,55123714128,310376329220,1733254750248,

%U 9609161226263,52931141892017,289892095063747,1579473182908079

%N Number of nX3 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors, with the exception of exactly two elements.

%C Column 3 of A283100.

%H R. H. Hardin, <a href="/A283095/b283095.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 6*a(n-1) +18*a(n-2) -52*a(n-3) -381*a(n-4) -543*a(n-5) +1654*a(n-6) +8943*a(n-7) +19026*a(n-8) +20615*a(n-9) +3639*a(n-10) -22728*a(n-11) -33125*a(n-12) -16047*a(n-13) +8640*a(n-14) +16878*a(n-15) +9570*a(n-16) +336*a(n-17) -3439*a(n-18) -2340*a(n-19) -477*a(n-20) +210*a(n-21) +216*a(n-22) +51*a(n-23) -13*a(n-24) -6*a(n-25) -3*a(n-26) +a(n-27)

%e Some solutions for n=4

%e ..1..0..1. .1..1..1. .1..0..1. .1..1..0. .0..0..1. .0..1..0. .0..0..1

%e ..0..0..1. .0..0..0. .0..1..0. .1..0..0. .1..1..1. .1..0..1. .0..0..0

%e ..0..1..1. .1..1..0. .1..1..1. .1..0..1. .0..0..1. .0..0..1. .0..1..1

%e ..0..0..0. .1..0..0. .0..0..1. .0..1..0. .0..0..0. .0..1..1. .1..1..0

%Y Cf. A283100.

%K nonn

%O 1,2

%A _R. H. Hardin_, Feb 28 2017