login
A282969
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly two elements.
8
0, 0, 0, 0, 0, 0, 1, 5, 5, 1, 2, 17, 38, 17, 2, 5, 75, 309, 309, 75, 5, 13, 295, 2012, 3635, 2012, 295, 13, 29, 1062, 12160, 35870, 35870, 12160, 1062, 29, 65, 3811, 70722, 346172, 577003, 346172, 70722, 3811, 65, 143, 13107, 395223, 3128641, 8716978
OFFSET
1,8
COMMENTS
Table starts
...0.....0........0..........1............2..............5...............13
...0.....0........5.........17...........75............295.............1062
...0.....5.......38........309.........2012..........12160............70722
...1....17......309.......3635........35870.........346172..........3128641
...2....75.....2012......35870.......577003........8716978........124683166
...5...295....12160.....346172......8716978......206993155.......4646063540
..13..1062....70722....3128641....124683166.....4646063540.....163712015523
..29..3811...395223...27439857...1722329260...100644923252....5565122952951
..65.13107..2150350..234322382..23131988665..2119718238840..183787303136570
.143.44498.11454117.1959091067.303943320975.43654941219187.5933174659006889
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-3) -6*a(n-4) +4*a(n-6) +6*a(n-7) +3*a(n-8) +a(n-9)
k=2: [order 15]
k=3: [order 33]
k=4: [order 63]
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..0. .0..0..1..1. .0..0..1..0. .0..0..0..1. .1..0..1..0
..0..1..0..0. .1..0..0..0. .0..0..0..1. .1..1..1..0. .1..1..0..0
..1..0..1..0. .0..0..0..0. .1..1..1..0. .0..0..0..0. .0..0..0..0
..1..0..1..0. .1..1..1..1. .0..0..1..0. .1..0..1..1. .1..1..0..0
CROSSREFS
Column 1 is A282831.
Sequence in context: A232651 A145227 A236555 * A046095 A322545 A256737
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 25 2017
STATUS
approved