%I #31 Sep 08 2022 08:46:18
%S 1,53,1484,29097,447426,5734918,63638001,627260142,5594403499,
%T 45779730871,347453597091,2466970932027,16501339314082,
%U 104588498225862,631215364345159,3642533720923593,20170341090888205,107511123136305075,553099301324196585
%N Expansion of Product_{k>=1} (1 - x^(7*k))^52/(1 - x^k)^53 in powers of x.
%H Seiichi Manyama, <a href="/A282931/b282931.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: Product_{n>=1} (1 - x^(7*n))^52/(1 - x^n)^53.
%F a(n) ~ exp(Pi*sqrt(638*n/21)) * sqrt(319) / (4*sqrt(3) * 7^(53/2) * n). - _Vaclav Kotesovec_, Nov 10 2017
%t nmax = 20; CoefficientList[Series[Product[(1 - x^(7*k))^52/(1 - x^k)^53, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 10 2017 *)
%o (PARI) my(N=30,x='x+O('x^N)); Vec(prod(j=1,N, (1 - x^(7*j))^52/(1 - x^j)^53)) \\ _G. C. Greubel_, Nov 18 2018
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^52/(1 - x^j)^53: j in [1..30]]) )); // _G. C. Greubel_, Nov 18 2018
%o (Sage)
%o R = PowerSeriesRing(ZZ, 'x')
%o prec = 30
%o x = R.gen().O(prec)
%o s = prod((1 - x^(7*j))^52/(1 - x^j)^53 for j in (1..prec))
%o print(s.coefficients()) # _G. C. Greubel_, Nov 18 2018
%Y Cf. A282919.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Feb 24 2017