login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Denominators/48 of the coefficients of the series expansion of the Riemann-Siegel theta function at infinity.
3

%I #33 Feb 28 2023 11:17:40

%S 1,120,1680,8960,25344,30750720,53248,167116800,1333592064,2739404800,

%T 72351744,526720696320,419430400,525462405120,55745722712064,

%U 45268955299840,141733920768,3462000479620300800,2542620639232,483482750523801600,284950532966055936

%N Denominators/48 of the coefficients of the series expansion of the Riemann-Siegel theta function at infinity.

%C See "RiemannSiegelTheta" in the help file of Mathematica, Series expansion at infinity.

%H Seiichi Manyama, <a href="/A282899/b282899.txt">Table of n, a(n) for n = 1..1000</a>

%H Richard P. Brent, <a href="https://arxiv.org/abs/1609.03682"> On asymptotic approximations to the log-Gamma and Riemann-Siegel theta functions</a>, arXiv:1609.03682 [math.NA], 2016.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Riemann-SiegelFunctions.html">Riemann-Siegel Functions</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Riemann%E2%80%93Siegel_theta_function"> Riemann-Siegel theta function</a>.

%H Wolfram Language and System, <a href="http://reference.wolfram.com/language/ref/RiemannSiegelTheta.html"> RiemannSiegelTheta</a>.

%t Denominator[ DeleteCases[ CoefficientList[ CoefficientList[ Series[ RiemannSiegelTheta[ t], {t, Infinity, 41}], 1/t^_] + Pi/8 + t/2 + t*Log[2]/2 + t*Log[Pi]/2 + t*Log[1/t]/2, 1/t][[1]], 0]]/48

%Y Cf. A114721, A282898 (numerators).

%K nonn,frac

%O 1,2

%A _Mats Granvik_ and _Robert G. Wilson v_, Feb 24 2017