Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Dec 04 2024 08:00:56
%S 1,7,1,9,7,3,2,9,1,5,4,5,0,7,1,1,0,7,3,9,2,7,1,3,1,9,1,1,9,3,3,5,2,2,
%T 4,0,2,1,5,0,6,8,9,4,4,0,1,4,9,4,1,6,7,7,0,0,5,4,5,3,3,4,3,3,3,1,9,4,
%U 1,4,8,9,8,0,6,2,9,2,4,3,3,9,8,8,3,6,6,2,5,5,0,7
%N Decimal expansion of Pi^2 + 8*K, where K is Catalan's constant.
%H G. C. Greubel, <a href="/A282823/b282823.txt">Table of n, a(n) for n = 2..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PolygammaFunction.html">Polygamma Function</a> (formula 24).
%H Sheldon Yang, <a href="https://dx.doi.org/10.1080/0020739X.1192.10715688">Some properties of Catalan's constant G</a>, Internat. J. Math. Ed. Sci. Tech. 23 (4) (1992) 549-556.
%F Equals 16*A222183.
%F Equals Psi(1, 1/4), where Psi(r, x) is the Polygamma function of order r.
%F Equals Sum_{k>=0} 1/(k + 1/4)^2. - _Amiram Eldar_, May 17 2022
%e 17.19732915450711073927131911933522402150689440149416770054533433319414...
%p Psi(1,1/4) ; evalf(%) # _R. J. Mathar_, Dec 04 2024
%t RealDigits[Pi^2 + 8 Catalan, 10, 100][[1]]
%o (PARI) Pi^2 + 8*Catalan \\ _Charles R Greathouse IV_, Mar 04 2018
%o (PARI) zetahurwitz(2,1/4) \\ _Charles R Greathouse IV_, Mar 04 2018
%o (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)^2 + 8*Catalan(R); // _G. C. Greubel_, Aug 24 2018
%Y Cf. A000796, A006752, A222183, A282824.
%K nonn,cons
%O 2,2
%A _Bruno Berselli_, Mar 06 2017