Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Aug 10 2017 13:03:22
%S 34,91,118,124,133,145,300,361,364,370,376,391,721,730,745,754,763,
%T 775,778,784,790,904,916,931,943,973,994,1003,1015,1075,1081,1084,
%U 1099,1105,1126,1138,1189,1204,1255,1261,1324,1348,1351,1393,1444,1477
%N Numbers n such that n and n + 1 are both composite and the reverse of n and n + 1 are both prime.
%C Related to a palindrome, a semordnilap is a word that when reversed results in a new, different, valid word. For example the semordnilap of the word "desserts" is the word "stressed". Applying this principle to numbers, any number is either a palindrome or a semordnilap. This sequence deals with adjacent composite numbers whose semordnilap numbers are prime.
%H Charles R Greathouse IV, <a href="/A282811/b282811.txt">Table of n, a(n) for n = 1..10000</a>
%e For n = 2 * 17 = 34, which reverses to 43, a prime, we have n + 1 = 5 * 7 = 35, which reverses to 53, also a prime.
%t searchMax = 2000; Select[Complement[Range[searchMax], Prime[Range[PrimePi[searchMax]]]], Not[PrimeQ[# + 1]] && PrimeQ[FromDigits[Reverse[IntegerDigits[#]]]] && PrimeQ[FromDigits[Reverse[IntegerDigits[# + 1]]]] &] (* _Alonso del Arte_, Feb 23 2017 *)
%t Select[Partition[Range[1500],2,1],AllTrue[#,CompositeQ] && AllTrue[ IntegerReverse[#],PrimeQ]&][[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Aug 10 2017 *)
%o (PARI) rev(n)=fromdigits(Vecrev(digits(n)))
%o is(n)=isprime(rev(n)) && isprime(rev(n+1)) && !isprime(n) && !isprime(n+1) \\ _Charles R Greathouse IV_, Feb 23 2017
%K nonn,base
%O 1,1
%A _Philip Mizzi_, Feb 22 2017