OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
LINKS
Robert Price, Table of n, a(n) for n = 0..126
Robert Price, Diagrams of first 20 stages
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
Wolfram Research, Wolfram Atlas of Simple Programs
FORMULA
From Colin Barker, Feb 22 2017: (Start)
Conjectures:
a(n) = 2^(n+1) - 1 for n>1 and even.
a(n) = (2^n - 2) / 3 for n>1 and odd.
a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
G.f.: (1 + 2*x + 2*x^2 - 8*x^3 + 8*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 507; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i , 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Feb 21 2017
STATUS
approved