login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282796
Binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 505", based on the 5-celled von Neumann neighborhood.
4
1, 0, 111, 100, 11111, 10100, 1111111, 1010100, 111111111, 101010100, 11111111111, 10101010100, 1111111111111, 1010101010100, 111111111111111, 101010101010100, 11111111111111111, 10101010101010100, 1111111111111111111, 1010101010101010100
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Feb 21 2017: (Start)
a(n) = (10^(n+1) - 1) / 9 for n even.
a(n) = 10*(10^n - 10) / 99 for n odd.
a(n) = 101*a(n-2) - 100*a(n-4) for n>3.
G.f.: (1 + 10*x^2 + 100*x^3) / ((1 - x)*(1 + x)*(1 - 10*x)*(1 + 10*x)).
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 505; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Feb 21 2017
STATUS
approved