Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Oct 02 2018 04:37:28
%S 4,2,3,12,2,13,3,2,6,5,2,12,4,2,3,12,2,24,3,2,6,24,2,12,4,2,3,12,2,5,
%T 3,2,6,13,2,12,4,2,3,5,2,24,3,2,5,24,2,12,4,2,3,12,2,24,3,2,6,24,2,5,
%U 4,2,3,12,2,24,3,2,6,5,2,12,4,2,3,12,2,24,3,2,6
%N Starting from F(n), minimum number, greater than 1, of consecutive Fibonacci numbers whose average is an integer.
%C Entries are 2, 3, 4, 5, 6, 12, 13 and 24.
%C Periodic with period equal to 420.
%H Paolo P. Lava, <a href="/A282772/b282772.txt">Table of n, a(n) for n = 0..1000</a>
%F a(3*k + 1) = 2;
%F a(12*k + 2) = a(12*k + 6) = 3;
%F a(12*k) = 4;
%F a(30*k + 9) = a(30*k + 29) = a(60*k + 44) = 5;
%F a(60*k + 8) = a(60*k + 20) = a(60*k + 32) = a(60*k + 56) = 6;
%F a(60*k + 3) = a(60*k + 11) = a(60*k + 15) = a(60*k + 23) = a(60*k + 27) = a(60*k + 35) = a(60*k + 47) = a(60*k + 51) = 12;
%F a(420*k + 5) = a(420*k + 33) = a(420*k + 117) = a(420*k + 173) = a(420*k + 201) = a(420*k + 257) = a(420*k + 285) = a(420*k + 341) = 13;
%F a(420*k + x) = 24, with x = 17, 21, 41, 45, 53, 57, 65, 77, 81, 93, 101, 105, 113, 125, 137, 141, 153, 161, 165, 177, 185, 197, 213, 221, 225, 233, 237, 245, 261, 273, 281, 293, 297, 305, 317, 321, 333, 345, 353, 365, 377, 381, 393, 401, 405, 413, 417.
%e a(0) = 4 because F(0) + F(1) + F(2) + F(3) = 0 + 1 + 1 + 2 = 4 and 4/4 = 1;
%e a(1) = 2 because F(1) + F(2) = 1 + 1 = 2 and 2/2 = 1;
%e a(2) = 3 because F(2) + F(3) + F(4) = 1 + 2 + 3 = 6 and 6/3 = 2;
%e a(3) = 12 because F(3) + F(4) + ... + F(13) + F(14) = 2 + 3 + ... + 233 + 377 = 984 and 984/12 = 82.
%p with(combinat): P:=proc(q) local a,k,n; for k from 0 to q do a:=fibonacci(k); for n from 1 to q do a:=a+fibonacci(k+n);
%p if type(a/(n+1),integer) then print(n+1); break; fi; od; od; end: P(10^3);
%t Table[k = 1; While[! IntegerQ@ Mean@ Take[#, n ;; n + k], k++]; k + 1, {n, Length@ # - 24}] &@ Fibonacci@ Range[0, 419] (* _Michael De Vlieger_, Mar 06 2017 *)
%Y Cf. A000045, A101907, A111035, A254141.
%K nonn,easy
%O 0,1
%A _Paolo P. Lava_, Mar 03 2017