login
Generalized Pascal triangle based on Zeckendorf representation of numbers, read by rows.
2

%I #18 Mar 04 2017 13:50:29

%S 1,1,1,1,1,1,1,1,2,1,1,2,1,0,1,1,1,3,3,0,1,1,2,2,1,2,0,1,1,2,3,1,1,0,

%T 0,1,1,1,4,6,0,4,0,0,1,1,2,3,3,3,1,3,0,0,1,1,2,4,3,2,1,1,2,0,0,1,1,2,

%U 5,4,1,1,0,2,0,0,0,1,1,3,3,1,4,0,1,1,0

%N Generalized Pascal triangle based on Zeckendorf representation of numbers, read by rows.

%H Lars Blomberg, <a href="/A282716/b282716.txt">Table of n, a(n) for n = 0..10000</a>

%H Julien Leroy, Michel Rigo, Manon Stipulanti, <a href="http://dx.doi.org/10.1016/j.disc.2017.01.003">Counting the number of non-zero coefficients in rows of generalized Pascal triangles</a>, Discrete Mathematics 340 (2017), 862-881. See Table 3.

%e Triangle begins:

%e 1,

%e 1,1,

%e 1,1,1,

%e 1,1,2,1,

%e 1,2,1,0,1,

%e 1,1,3,3,0,1,

%e 1,2,2,1,2,0,1,

%e 1,2,3,1,1,0,0,1,

%e 1,1,4,6,0,4,0,0,1,

%e 1,2,3,3,3,1,3,0,0,1

%e 1,2,4,3,2,1,1,2,0,0,1

%e 1,2,5,4,1,1,0,2,0,0,0,1

%e 1,3,3,1,4,0,1,1,0,0,0,0,1

%e ...

%Y For number of nonzero entries in rows see A282717.

%Y Cf. A014417.

%K nonn,tabl

%O 0,9

%A _N. J. A. Sloane_, Mar 02 2017

%E More terms from _Lars Blomberg_, Mar 03 2017