

A282691


a(n) = maximal number of real roots of any of the 2^(n+1) polynomials c_0 + c_1*x + c_2*x^2 + ... + c_n*x^n where the coefficients c_i are +1 or 1.


2



0, 1, 2, 3, 2, 3, 2, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 5, 6, 7, 6, 7, 6, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

The roots are counted with multiplicity.
Since (+/)P((+/)x) has the same number of real roots as P(x), we need consider only the cases where the x^0 and x^1 coefficients are +1.  Robert Israel, Feb 23 2017


LINKS

Table of n, a(n) for n=0..23.


EXAMPLE

a(1) = 1 from 1 + x.
a(2) = 2 from 1 + x  x^2.
a(3) = 3 from 1 + x  x^2  x^3 = (1+x)*(1x^2).
a(5) = 3 from x^5  x^4 + x^3  x^2  x + 1.  Robert Israel, Feb 26 2017
a(7) = 5 from x^7 + x^6  x^5  x^4  x^3  x^2 + x + 1 = (x  1)^2*(x + 1)^3*(x^2 + 1).  Chai Wah Wu and W. Edwin Clark, Feb 23 2017


MAPLE

# Maple program using Robert Israel's suggestion (above) for the computation of a(n) using Sturm's Theorem and the squarefree factorization of the 1, 1 polynomials, from W. Edwin Clark, Feb 23 2017:
numroots:=proc(p, x)
local s:
sturm(sturmseq(p, x), x, infinity, infinity):
end proc:
a:=proc(n)
local m, T, L, L1, p, P, s, k, q, u;
m:=0;
T:=combinat:cartprod([seq([1, 1], i=1..n1)]):
while not T[finished] do
L:=T[nextvalue]();
L1:=[1, 1, op(L)];
p:=add(L1[i]*x^(i1), i=1..n+1);
q:=sqrfree(p, x);
k:=0;
for u in q[2] do k:=k+numroots(u[1], x)*u[2]; od;
if k > m then m:=k; fi;
end do:
return m;
end proc:


MATHEMATICA

Do[Print[Max[CountRoots[Internal`FromCoefficientList[#, x], x] & /@ Tuples[{1, 1}, n]]], {n, 1, 23}] (* Luca Petrone, Feb 23 2017 *)


CROSSREFS

Cf. A282692, A282701.
Sequence in context: A064652 A077600 A120223 * A346744 A265577 A251103
Adjacent sequences: A282688 A282689 A282690 * A282692 A282693 A282694


KEYWORD

nonn,more


AUTHOR

Oanh Nguyen and N. J. A. Sloane, Feb 23 2017


EXTENSIONS

a(7) corrected and a(15)a(16) added by Chai Wah Wu, Feb 23 2017; a(7) also corrected by W. Edwin Clark, Feb 23 2017
a(17)a(22) added by Luca Petrone, Feb 23 2017
a(23) added by W. Edwin Clark, Feb 24 2017


STATUS

approved



