login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX7 0..1 arrays with no 1 equal to more than one of its king-move neighbors.
1

%I #4 Feb 20 2017 07:32:27

%S 81,1444,25153,557439,10614316,213392087,4257307148,84514081303,

%T 1685475197497,33544066527869,667927323468328,13300345031547682,

%U 264815719570028929,5272968794893979347,104992034881743428678

%N Number of nX7 0..1 arrays with no 1 equal to more than one of its king-move neighbors.

%C Column 7 of A282647.

%H R. H. Hardin, <a href="/A282646/b282646.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A282646/a282646.txt">Empirical recurrence of order 66</a>

%F Empirical recurrence of order 66 (see link above)

%e Some solutions for n=3

%e ..1..0..0..0..0..0..1. .0..0..1..0..1..0..0. .1..0..1..0..0..0..0

%e ..0..0..1..0..0..0..0. .0..0..0..0..1..0..1. .0..0..0..0..0..0..0

%e ..1..0..0..0..0..1..1. .0..0..0..0..0..0..0. .0..0..1..1..0..0..1

%Y Cf. A282647.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 20 2017