login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than two of its king-move neighbors, with the exception of exactly one element.
7

%I #4 Feb 18 2017 08:41:51

%S 0,0,0,0,0,0,0,10,10,0,0,36,89,36,0,0,154,618,618,154,0,0,652,4167,

%T 6284,4167,652,0,0,2472,26278,73140,73140,26278,2472,0,0,9356,160698,

%U 766472,1381258,766472,160698,9356,0,0,34766,961128,7774180,23705784,23705784

%N T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than two of its king-move neighbors, with the exception of exactly one element.

%C Table starts

%C .0......0........0..........0.............0...............0.................0

%C .0......0.......10.........36...........154.............652..............2472

%C .0.....10.......89........618..........4167...........26278............160698

%C .0.....36......618.......6284.........73140..........766472...........7774180

%C .0....154.....4167......73140.......1381258........23705784.........395048648

%C .0....652....26278.....766472......23705784.......665880200.......18249324844

%C .0...2472...160698....7774180.....395048648.....18249324844......823388675124

%C .0...9356...961128...77796496....6468244262....490759334872....36434863806328

%C .0..34766..5646223..762302160..103806368796..12942071819052..1581290354621990

%C .0.126780.32728582.7378886108.1645203138692.337156106069268.67798532910326566

%H R. H. Hardin, <a href="/A282560/b282560.txt">Table of n, a(n) for n = 1..180</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1)

%F k=2: [order 8]

%F k=3: [order 16]

%F k=4: [order 28]

%F k=5: [order 62]

%e Some solutions for n=4 k=4

%e ..1..0..0..1. .1..0..1..1. .1..0..1..1. .0..0..1..1. .1..0..1..1

%e ..0..1..0..1. .0..1..0..0. .1..0..0..0. .1..1..0..1. .1..1..0..0

%e ..0..1..0..0. .0..0..0..1. .1..1..0..1. .0..0..0..0. .0..0..0..0

%e ..1..0..1..1. .1..1..1..1. .0..0..0..0. .0..1..1..1. .1..0..1..1

%K nonn,tabl

%O 1,8

%A _R. H. Hardin_, Feb 18 2017