Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Feb 27 2018 07:09:02
%S 1,192,-402048,-161431296,20329262976,23865942948480,5794392238723584,
%T 671204645516954112,41947216018774335360,1615253348424607402944,
%U 42337765240473386384640,812656088633074046171904,12060155362281020231526912
%N Coefficients in q-expansion of E_4^5*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
%H Seiichi Manyama, <a href="/A282541/b282541.txt">Table of n, a(n) for n = 0..1000</a>
%t terms = 13;
%t E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
%t E4[x]^5* E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%Y Cf. A280869 (E_6^2), A282287 (E_4*E_6^2), A282292 (E_4^2*E_6^2 = E_10^2), A282332 (E_4^3*E_6^2), A282403 (E_4^4*E_6^2), this sequence (E_4^5*E_6^2).
%K sign
%O 0,2
%A _Seiichi Manyama_, Feb 17 2017