%I
%S 8,43,206,1097,5675,29433,153037,794716,4128244,21444844,111394775,
%T 578646848,3005807582,15613798271,81106596833,421311892656,
%U 2188523765507,11368386235590,59053598944793,306756604030647,1593461123288541
%N Number of nX3 0..1 arrays with no 1 equal to more than two of its kingmove neighbors.
%C Column 3 of A282528.
%H R. H. Hardin, <a href="/A282523/b282523.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n1) +2*a(n2) a(n3) 24*a(n4) +13*a(n5) 2*a(n7) +6*a(n8).
%F G.f.: x*(8+3*x25*x^211*x^3+13*x^42*x^5+4*x^6+6*x^7)/(1+5*x+2*x^2x^324*x^4+13*x^52*x^7+6*x^8) .  _R. J. Mathar_, Feb 28 2017
%e Some solutions for n=4
%e ..0..1..1. .0..0..0. .0..1..0. .1..0..1. .1..0..1. .0..0..0. .1..1..0
%e ..0..0..0. .0..0..1. .0..1..1. .0..0..1. .0..0..0. .0..0..0. .0..0..0
%e ..0..1..0. .0..0..0. .0..0..0. .1..0..1. .0..0..0. .1..0..0. .0..0..0
%e ..0..0..0. .1..1..0. .1..1..0. .0..0..1. .1..1..0. .0..1..1. .0..0..1
%Y Cf. A282528.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 17 2017
