%I #14 Oct 30 2017 21:43:00
%S 0,1,8,7,24,22,40,22,80,54,80,22,80,54,112,70,240,134,144,22,80,54,
%T 112,70,240,134,176,70,240,150,336,246,720,326,272,22,80,54,112,70,
%U 240,134,176,70,240,150,336,246,720,326,304,70,240,150,336,246,720,342,464,246,752,454,1136,838,2064
%N First differences of A282470.
%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F a(2n) = 2*A187211(2n).
%F a(2n+1) = A187211(2n+1).
%e Written as an irregular triangle the sequence begins:
%e 0;
%e 1;
%e 8;
%e 7;
%e 24;
%e 22, 40;
%e 22, 80, 54, 80;
%e 22, 80, 54, 112, 70, 240, 134, 144;
%e 22, 80, 54, 112, 70, 240, 134, 176, 70, 240, 150, 336, 246, 720, 326, 272;
%e 22, 80, 54, 112, 70, 240, 134, 176, 70, 240, 150, 336, 246, 720, 326, 304, 70,...
%e ...
%e Starting from a(3) = 7 the row lengths of triangle are the terms of A011782.
%Y Cf. A011782, A139251, A187210, A187211, A182470, A282470.
%K nonn,tabf
%O 0,3
%A _Omar E. Pol_, Mar 17 2017