login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282413
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 467", based on the 5-celled von Neumann neighborhood.
4
1, 1, 7, 0, 31, 0, 127, 0, 511, 0, 2047, 0, 8191, 0, 32767, 0, 131071, 0, 524287, 0, 2097151, 0, 8388607, 0, 33554431, 0, 134217727, 0, 536870911, 0, 2147483647, 0, 8589934591, 0, 34359738367, 0, 137438953471, 0, 549755813887, 0, 2199023255551, 0
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
For n != 1, is a(n) = A279872(n)? - Bruno Berselli, Feb 15 2017
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Feb 15 2017: (Start)
a(n) = 2^(n+1)-1 for n>1 and even.
a(n) = 0 for n>1 and odd.
a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
G.f.: (1 + x + 2*x^2 - 5*x^3 + 4*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 467; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Feb 14 2017
STATUS
approved