login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282354 Positive j such that d(j) = d(j + 2*d(j)), where d(j) is the number of divisors of j. 2

%I #15 Jun 20 2023 10:03:52

%S 3,6,7,13,14,19,20,24,26,27,32,37,38,40,43,54,57,60,63,67,69,72,74,77,

%T 79,84,85,86,87,88,97,103,108,109,111,114,115,125,126,127,132,133,134,

%U 136,138,154,158,163,170,174,177,193,194,200,201,204,205,206,209

%N Positive j such that d(j) = d(j + 2*d(j)), where d(j) is the number of divisors of j.

%C The sequence contains the smaller member of every pair of cousin primes (A023200).

%C The sequence contains no perfect squares. Indeed, let a(m) = k^2 for some m. Then, by the definition, d(k^2 + 2*d(k^2)) = d(k^2). Note that d(k^2) is odd. On the other hand, it is known (cf. A046522) that d(k^2) < 2*k. Hence (k+2)^2 - k^2 = 4*k + 4 > 2*d(k^2). Thus k^2 < k^2 + 2*d(k^2) < (k+2)^2. Since, evidently, k^2 + 2*d(k^2) cannot be (k+1)^2, then k^2 + 2*d(k^2) cannot be a square. Therefore, d(k^2 + 2*d(k^2)) is even, which is a contradiction.

%H Charles R Greathouse IV, <a href="/A282354/b282354.txt">Table of n, a(n) for n = 1..10000</a>

%t Select[Range@ 210, Function[d, DivisorSigma[0, # + 2 d] == d]@ DivisorSigma[0, #] &] (* _Michael De Vlieger_, Feb 13 2017 *)

%o (PARI) is(n)=my(d=numdiv(n)); d==numdiv(n+2*d) \\ _Charles R Greathouse IV_, Feb 14 2017

%Y Cf. A000005, A025487, A037916, A175304, A282231.

%K nonn

%O 1,1

%A _Vladimir Shevelev_, Feb 13 2017

%E More terms from _Peter J. C. Moses_, Feb 13 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 16:45 EDT 2024. Contains 371989 sequences. (Running on oeis4.)