|
|
A282210
|
|
Coefficients in q-expansion of E_2^4, where E_2 is the Eisenstein series shown in A006352.
|
|
5
|
|
|
1, -96, 3168, -34944, -107808, 1955520, 16829568, 76708608, 258593760, 715480608, 1729546560, 3771497088, 7581237888, 14296261056, 25520442624, 43590539520, 71582414304, 113752634688, 175604039136, 264097115520, 388619703360, 559658001408, 792716685696
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..1000
|
|
MATHEMATICA
|
terms = 23;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E2[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
|
|
CROSSREFS
|
Cf. A006352 (E_2), A281374 (E_2^2), A282018 (E_2^3), this sequence (E_2^4).
Sequence in context: A234075 A347753 A164762 * A008660 A164751 A272765
Adjacent sequences: A282207 A282208 A282209 * A282211 A282212 A282213
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Seiichi Manyama, Feb 09 2017
|
|
STATUS
|
approved
|
|
|
|