login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX3 0..2 arrays with no element unequal to more than four of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
1

%I #4 Feb 07 2017 08:13:16

%S 0,1,884,37560,449234,4930949,45129433,390165523,3162500791,

%T 24713889390,186977339538,1381411316900,10004037615934,71283461550273,

%U 500987588246711,3480142902681961,23932311514960749,163138923128023302

%N Number of nX3 0..2 arrays with no element unequal to more than four of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

%C Column 3 of A282159.

%H R. H. Hardin, <a href="/A282156/b282156.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 9*a(n-1) +27*a(n-2) -276*a(n-3) -681*a(n-4) +2517*a(n-5) +10848*a(n-6) +8973*a(n-7) -30915*a(n-8) -113468*a(n-9) -246519*a(n-10) -508905*a(n-11) -365015*a(n-12) +2045778*a(n-13) +8208600*a(n-14) +16009592*a(n-15) +18148296*a(n-16) +3749892*a(n-17) -53257624*a(n-18) -190970592*a(n-19) -385072032*a(n-20) -489093664*a(n-21) -262640208*a(n-22) +427101792*a(n-23) +1482338048*a(n-24) +2604740544*a(n-25) +2876222208*a(n-26) +1038910656*a(n-27) -3432260736*a(n-28) -8318151936*a(n-29) -8221305088*a(n-30) -1081149696*a(n-31) +8601944064*a(n-32) +12265071616*a(n-33) +5392852992*a(n-34) -4092251136*a(n-35) -8009582592*a(n-36) -4627083264*a(n-37) +1100685312*a(n-38) +2357014528*a(n-39) +1361313792*a(n-40) +58245120*a(n-41) -230031360*a(n-42) -157483008*a(n-43) -42467328*a(n-44) -7077888*a(n-45) for n>49

%e Some solutions for n=4

%e ..0..1..0. .0..0..1. .0..1..1. .0..1..2. .0..0..1. .0..1..0. .0..1..0

%e ..2..2..0. .0..2..0. .2..1..0. .2..2..2. .1..2..2. .2..0..1. .2..1..0

%e ..2..2..0. .1..2..0. .1..2..0. .0..0..0. .1..2..1. .2..1..1. .1..1..1

%e ..0..2..1. .2..1..1. .0..0..1. .0..0..0. .0..0..1. .2..2..2. .2..2..2

%Y Cf. A282159.

%K nonn

%O 1,3

%A _R. H. Hardin_, Feb 07 2017