Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 10 2017 06:58:49
%S 5,13,2,563,3,7
%N A(n, k) = k-th Wilson prime p of order n with p >= n and k running over the positive integers. Square array read by antidiagonals.
%C A Wilson prime of order n is a prime p such that (n-1)!*(p-n)!-(-1)^n == 0 (modulo p^2).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WilsonPrime.html">Wilson Prime</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Wilson_prime">Wilson prime</a>
%e Array A(n, k) starts:
%e 5, 13, 563
%e 2, 3, 11, 107, 4931
%e 7
%e 10429
%e 5, 7, 47
%e 11
%o (PARI) is_wilson(n, order) = Mod((order-1)!*(n-order)!-(-1)^order, n^2)==0
%o table(rows, cols) = for(x=1, rows, my(i=0); forprime(p=x, , if(is_wilson(p, x), print1(p, ", "); i++; if(i==cols, print(""); break))))
%o table(4, 3) \\ print initial 4 rows and 3 columns of table
%Y Cf. A007540 (row 1), A079853 (row 2), A152413 (row 17), A128666 (column 1).
%K nonn,hard,tabl,more
%O 1,1
%A _Felix Fröhlich_, Feb 05 2017